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In  the cubic crystals of the rocksalt, sphalerite, antifluorite, and spinel types and in the hexagonal 
crystals of the nickel arsenide, wurtzite, and olivine types, the cations are either octahedrally or 
tetrahedrally surrounded. Algorithms are presented here for locating the ions of these seven struc- 
tures in the following sequence. First, cubically and hexagonally closely packed anion structures 
are compared, and geometric operators relating the two classes are defined. Second, the location of 
all possible cation sites is described algebraically, and finally the distribution of cations over these 
sites is described in terms of the parities of the coordinates of the sites. An interstitial type of crystal 
model from which the seven classes of crystals have been constructed is discussed. 

1. I n t r o d u c t i o n  

In part I of these papers an algebraic description was 
presented for the location of ions in cubic crystals with 
closely packed anions (Loeb, 1958), together with 
calculations of magnetic-dipole interaction energies 
and the evaluation of neutron diffraction patterns. 
The purpose of the algebraic description of the three- 
dimensional  pat terns  formed by  various crystal  
elements is analogous to the aim of analyt ic  geometry, 
namely  to express in a few algori thms the spatial  
relationships between large numbers  of points. Such 
algorithms, when stored in the memory  of an electronic 
computer,  can constitute a crystal lographic 'vocab- 
u lary '  for tha t  computer,  to be referred to when 
certain calculations are to be performed on different 
types of crystals. 

Loeb's (1958) analysis  of the olivine structure in 
analogy with spinel was not  altogether successful 
because spinel has cubic symmetry ,  whereas in olivine 
the anions form a strongly distorted hexagonally 
closely packed structure ra ther  t han  a cubic one. The 
present paper  extends the algebra for cubic systems 
presented in par t  I to hexagonal  ones. This extension 
is in the nature  of a fur ther  generalization; the 
algorithms presented here encompass the following 
cubic and hexagonal  systems;  rocksalt, nickel arsenide, 
sphalerite,  wurtzite,  anti-fluorite,  spinel and olivine. 

In  all  structures under  consideration the anions are 
closely packed, either cubically or hexagonally.  There- 
fore we shall  first analyze both closely packed struc- 

tures, next  the interstices between the closely packed 
ions, and f inal ly the distr ibut ion of cations over these 
interstices. 

2. Cubic  and  h e x a g o n a l  c l o s e - p a c k i n g ;  
c o m m o n  c o o r d i n a t e  s y s t e m  

If the axis of highest  symmet ry  in hexagonal ly  closely 
packed structures is made to coincide with a 111-axis 
of the cubic one, then  by appropriate  scaling and rota- 
tion, one th i rd  of the planes perpendicular  to the 
common axis can be made coincident;  the te rm 
'coincident planes '  means  tha t  all ion sites in one of 
the planes coincide with the sites in the other plane. 
The coincident planes are not uniformly dis t r ibuted 
along the common axis, but  as adjacent  pairs, each 
pair  of coincident planes being separated from the next  
pair  by  four non-coincident planes. To describe this  
less awkwardly,  we define the following coordinate 
system in terms of the Cartesian coordinates used in 
par t  I : 

u = 2 x - y - z  = 3 x - h  (1) 

v = - x + 2 y - z  = 3 y - h  (2) 

w = - x - y ÷ 2 z  = 3 z - h  (3) 

h = x + y + z  (4) 

where u, v and w are not  independent ,  but  are related 
by (5). 

u + v + w = O  . (5) 

* This work was supported in part by the U.S. Army 
(Signal Corps), the U.S. Air Force (Office of Scientific Re- 
search, Air Research and Development Command), and the 
U.S. Navy (Office of Naval l~esearch). 

t This work was based partly on an S.M. Thesis submitted 
to the Department of Electrical Engineering, M.I.T., 1959. 

Geometrically,  this  amounts  to the defini t ion of four 
axes, namely  an H-axis  along the 111-axis of the cubic 
structure and three axes U, V and W perpendicular  
to the H-axis,  at  angles of 120 ° with respect to each 
other. U, V and W are projections of the X-, Y-, and 
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Z-axes, respectively, on an h-plane. The origin is 
chosen on an anion, and the U-, V- and W-axes go 
from the origin in the directions of next-nearest anions, 
as shown in Fig. 1. 

These three arrays are shown in Fig. 2(a), projected 
on a common plane. Accordingly, D-arrays occur in 
cubically closely packed structures when h=6N,  E- 
arrays when h = 6N + 2, and F-arrays  when h -- 6 N -  2, 
where N is here any integer. 

0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 

Fig. 1. The U-, V-, and W-axes and the anions 
in the origin plane. 

I t  was shown tha t  the Cartesian coordinates of the 
cubically closely packed anions obey the equation 

x + y + z = 2 K  , 

where K is an integer. 
With  the aid of equation (4) this is transformed into 

h = 2 K  . (6) 

From (2) and (3) it follows that ,  since the Cartesian 
coordinates of cubically closely packed ions are integers, 

v - -  3L-hmod3  } 
w =  3M-hmod 3 (7) 

J 

where L and M are integers. 

[hmod 3 = h -  3 N ,  

where N is an integer so chosen tha t  ]hmod a [< 3.] 

Since the u-coordinate is related to v and w by (5), 
it will henceforth not be mentioned explicitly when 
it is not of special interest. 

From (7) it  follows tha t  only three types of arrays 
can occur in any given h-plane, namely those for which 
(8) holds (called D-planes), those for which (9) holds 
(called E-planes), and those for which (10) holds 
(called F-planes). 

v = 3 L  } 
w =  3M (8) 

v = 3 L + l  } 
w =  3 M + l  (9) 

v = 3L - 1 (10) w =  3 M - 1  ~ . 
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Fig. 2. (a) Projection of cubically closely packed anions on 
an h-plane. (b) Projection of hexagonally closely packed 
anions on an h-plane. 

For hexagonally closely packed ions we choose the 
origin in one of the planes coinciding with a plane of 
the cubic structure, in such a way tha t  the positive 
h-direction is toward the nearest coincident plane. 
Then coincident planes occur at  h=O and at h=2,  
again at h= 12 and at  h= 14, etc. Since, in the cubic 
structures, the planes at h=O and at h= 12 contain 
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D-arrays, the same must be true for hexagonal struc- 
tures. Similarly at  h=2, 14, . . . ,  12N+2,  the hex- 
agonal structures contain E-arrays. The planes at  
h - - 1 2 N + 4  and 1 2 N + 6  differ for cubically and 
hex~gonally closely packed structures, because, as 
shown in Fig. 2(b), the hexagonally closely packed 
structures contain only D- and E-arrays. The stacking 
of D-, E-, and F-arrays to form cubically and hex- 
agonally closely packed structures is shown in Table 1. 

From Fig. 2(a) it follows tha t  when the three arrays 
are rotated through 60 ° around an ion belonging to 
a particular one of the three arrays, tha t  particular 
ar ray  is turned into itself and the other two are turned 
into each other. An operator R(h0) is defined represent- 
ing rotation of the plane at  h=ho around an ion in 
tha t  plane, whereas R(h0 < h) indicates rotation of 
all planes having he < h around an axis through an 
ion in the plane at  h = h0. 

R(2_<h), R(4_<h), R(6_<h),  . . . ,  R(2N_<h),  . . .  

are successively applied to, respectively, the cubic and 
hexagonal closely packed structures. In applying these 
operators, the following rules are observed: 

1. R(h0 _< h) does not affect planes with h < h0. 
2. R(h0 _< h) leaves unaffected all arrays tha t  are 

identical with the array at  h= he and turns the 
other two types of arrays into each other. 

I t  follows from Tables 2(a) and 2(b) tha t  the sequence 

R(2 < h), R(4 < h), . . . ,  R(2N < h), . . .  

turns cubic into hexagonal, hexagonal into cubic 
structures. This relation between hexagonal and cubic 
crystals is easily demonstrated with demountable 
models, by using the procedure just given for realizing 
the operator R(h0 _< h). 

Table 1. Stacking of planes in cubically and 
hexagonally closely packed structures 

Cubic Hexagona l  

D h = 12 D 

2" h = 10 E 
E- h =  8 D 

D h =  6 E 

2"- h = 4 D 

E- h =  2 - - E  

D. .h = O- - - D  

The operator R(h0 _< h) is easily applied to demount- 
able crystal models, where it is realized by lifting the 
portion of the model tha t  is above and includes the 
plane h=ho, rotating it through 60 °, and putt ing it 
down again. Tables 2(a) and 2(b) show what happens 
when the operators 

3. T h e  in ters t i t i a l  s i t e s  

Since any pair of adjacent anion h-planes in the 
hexagonally closely packed structure can be made to 
coincide with a pair of h-planes in cubic structures, 
a description of interstitial sites in terms of adjacent 
anion planes is applicable to cubic as well as to hex- 
agonal structures. There are two types of interstitial 
sites, namely those at the centers of octahedra having 
anions at their corners (octahedral sites), and those 
at the centers of tetrahedra having anions at  their 
corners (tetrahedral sites). The octahedral sites lie half 
way between anion planes, with three surrounding 
anions in one anion plane, and three anions in the other 
anion plane. The tetrahedral sites lie half way between 
octahedral-site planes and anion planes, with three 
surrounding anions in the nearest anion plane tha t  

Table 2(a). Conversion of the cubic into 
Result of applying the operator R(h 0 ~ h) to the previous column 

the hexagonal closely packed structure 

h Cubic R(2  < h) R(4  _< h) R(6  _< h) R(8  _< h) R(10  _< h) R(12  _< h) 
0 D D D D D D D 
2 E E E E E E E 
4 F D D D D D D 
6 D F E E E E E 
8 E E F D D D D 

10 F D D F E E E 
12 D F E E F D D 
14 E E F D D 2' E 

Table 2(b). Conversion of the hexagonal into the cubic closely packed structure 
Resu l t  of opera t ing on the previous  column wi th  the  opera to r  R(h  0 _< h) 

h Hexagona l  R(2  _< h) R(4  g h) R(6  < h) R(8  < h) R(10  _< h) R(12 _< h) 

0 D D D D D D D 
2 E E E E E E E 
4 D F F F F F F 
6 E E D D D D D 
8 D F F E E E E 

10 E E D D F F 2, 
12 D F F E E D D 
14 E E D D F F E 
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forms the base of the tetrahedron, and the fourth 
anion that  forms the apex of the tetrahedron in the 
next-nearest anion plane. The distance from a tetra- 
hedral site to its nearest anion plane is one third of the 
distance to its next-nearest anion plane; this agrees 
with the geometry of the equilateral tetrahedron. 
Table 3 summarizes the occupation of various h-planes 
by anions and interstitial sites. 

Table 3. Stacking of 
in cubic and 

C u b i c  

anions, A-sites, and B-sites 
hexagonal structures 

H e x a g o n a l  

D h = 12 .D 

2 ' -  h = ~ - -  .E 

E h = l l  F 

D -  h = - ~  - D 

F -  h = 10- .E  

E . . . .  h ---- - ~ -  D 

/ 9 - -  h =  9 F 

F h = V - -  E 
E h =  8. -D 

D- h = J~ - E 

F - -  h =  7 F 

E. h : - ~ -  D 

D - - -  h = 6. -E 

F - -  h = ~ -  D 

E h =  5 - -  F 

D . h =  ~-- E 

F. h = 4. .D 

~ h =  ~ E 
D h =  3 F 

F- - h =  ~ D 

E h = 2 E 

D - h =  ~ D 

t~- -  h =  1 F 

h =  ½ E 
D h = 0 D 

a n i o n  p l a n e s  

t e t r a h e d r a l - s i t e  p l a n e s  

o c t a h e d r a l - s i t e  p l a n e s  

It  follows that  all octahedral sites must satisfy the 
equation 

h = 2 K + l  (11) 

and tetrahedral sites must satisfy either 

h = 2 K + ½  (12a) 
o r  

h = 2 g - ½  . (125) 

If the interstitial sites of two adjacent anion planes 
are projected on these anion planes, some interesting 
relationships are revealed. The octahedral sites project 
on the centers of the triangles formed by the anions 
of both nearest anion planes, so that  the array formed 
by the octahedral sites differs from that  formed by 
the anions in the nearest planes (see Table 3). The 
tetrahedral  sites project on those anions that  form the 

apices of their surrounding tetrahedra. The arrays 
formed by the tetrahedral sites are therefore identical 
with those in the next-nearest anion planes, and hence 
differ from arrays in both adjacent planes, one plane 
of which contains anions and one of which contains 
octahedral sites (see Table 3). 

4. S u m m a r i z i n g  a lgor i thms for the location of 
closely packed ions and interstitial sites 

Table 3 summarizes graphically the location of the 
ions and interstices in cubic and hexagonal closely 
packed structures. This information can be expressed 
more generally in terms of the following algorithms, 
which can be easily programmed for a digital computer. 

The equations for the location of both ions and 
interstices are: 

v = 3L +[f(h)]mod3 (13) 
w = 3 M +  [f(h)Jmod 3 

where 
f(h) = 2h for cubic structures (14) 

and 

f(h) = 4 - 21hmo~ 4 -  2 [ for hexagonal structures . (15) 

The planes h = 2K are occupied by anions. 
The planes h = 2 K + l  are occupied by octahedral 

interstices. 
The planes h=2K_+ ½ are occupied by tetrahedral 

interstices. 
The h-planes having [f(h)]moa 3 = 0 contain D-arrays. 
The h-planes having [f(h)]mod a = 1 contain E-arrays. 
The h-planes having [f(h)]~od a = 2 contain F-arrays. 

As an example, let us use these algorithms to deter- 
mine the configuration in the plane h= 15/2 for both 
the cubic and hexagonal structures and compare the 
results with Table 3. 

For cubic structures f (15/2)= 15, therefore 

f(15/2)mod3=O; 

therefore the plane h= 15/2 contains a D-array. Since 
1 5 / 2 = 2 K - ½ ,  the plane h= 15/2 contains tetrahedral 
sites. 

For hexagonal structures f(15/2) = 4 - 2 ] ~ - 2 [  = 
4 - 3 = 1 ;  therefore the plane h=15/2 contains an 
E-array of tetrahedral sites. 

Both of these results agree with Table 3. Note that,  
at first sight, it might appear that  (7) and (14) contra- 
dict each other. However, (2h)mo~ 8 = - hmo~ 8 ; al- 
though (7) describes the anion locations in cubic 
crystals, it does not describe the locations of the 
interstitial sites. Equation (14) is valid for all ions and 
all interstitial sites. 

5. Rocksalt,  sphalerite, nickel arsenide, 
wurtzite and fluorite 

The classes of crystal structures under consideration 
here all have closely packed hexagonal or cubic anion 

A C 13 - -  30 
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s t ructures  and  differ in the dis tr ibut ion of cations 
over the  inters t i t ia l  sites. A complete description of 
the  crystal  s t ructures  consists of the algori thms of 
section 4 together  with a description of the distribu- 
t ion of ions over the  interst i t ial  sites. The la t ter  is 
given in the  form of a dis tr ibut ion pat tern ,  in which 
all possible sites are described by 0 (empty) or 1 (filled). 

Table 4. Distribution pattern for rocksalt and 
nickel arsenide 

h=2K--½ 0 
h=2K+ l 1 
h=2K+½ 0 

The dis tr ibut ion pa t t e rn  for rocksal t  (NaC1) and 
nickel arsenide (NiAs) are shown in Table 4, which 
indicates t h a t  in both of these s t ruc tures  all t e t rahedra l  
sites are e m p t y  and  all octahedral  sites are filled. 

Both  sphalerite and wurtzi te  have half of their  
t e t rahedra l  sites filled, and all other sites empty ;  
there are two possible distr ibution pat terns ,  as shown 
in Table 5. 

Table 5. Distribution patterns for sphalerite 
and wurtzite 

h=2K- -½ 1 h=2K--½ 0 
h= 2K + 1 0 or h= 2K 0 
h=2K+½ 0 h=2K+½ 1 

Table 6. Distribution pattern for anti-fluorite 

h = 2 K - -  ½ 1 
h = 2 K +  1 0 
h = 2 K + ~  1 

~he ~n~ifh0il~e ~ruc~are ¢0nil~ 0f d0~e]y p~ckeii 
anions with, for instance, potassium ions in all te t ra-  
hedral  sites. I ts  dis tr ibut ion pa t t e rn  is shown in 
Table 6. 

I t  follows tha t  four b inary  digits are sufficient to 
store all information regarding these five crystal  
s t ructures  in a computer  memory ;  namely,  three for 
the distr ibution pat tern ,  and one to distinguish hex- 
agonal from cubic pa t te rns  in order to refer the 
computer  to the appropr ia te  computa t ion for f(h). 
In  addit ion to these four bits the algori thms of sec- 
t ion 4 must  be stored as s t andard  subprograms in the 
permanent  vocabulary  of the computer.  

6. F u r t h e r  s u b d i v i s i o n  of i n t e r s t i t i a l  s i t e s ;  
e x c h a n g e  coup l ing  

In  par t  I the octahedral  sites were subdivided into 
subarrays  for two reasons. In  ant i ferromagnets  of the 
rocksalt  these sites are occupied by four sets of dipoles ; 
exchange coupling between any  pair  of dipoles occurs 
only if the two dipoles belong to the same set. There- 
fore it  is impor tan t  to indicate not  only whether  or 
not  octahedral  sites are filled, but  also to which set 
of the  four sets of dipoles the cation occupying it 

belongs. Secondly, in spinel and olivine only a fraction 
of the sites in any  given h-plane is occupied; it  is 
therefore necessary to indicate which sites within any  
h-plane are filled, and which are empty.  Both  for the  
description of the four dipole systems and for t h a t  of 
spinel the  octahedral  sites were subdivided according 
to the parit ies of their  y- and z-coordinates. The four 
subarrays  are called 'a ' ,  'b', 'c' and 'd', and are defined 
by Table 7, where '0' indicates 'even'  and '1' indicates 
'odd' .  

Table 7. Subdivision of octahe&'al sites according to their 
y- and z-parity 

Ymod 2, Zmo,-I 2 --> 

0 0  01 11 10 

a b c d 

Table 7 can be rewri t ten in terms of v and w with 
the aid of (2) and (3). Since 3y and 3z have the  same 
respective parit ies as do y and z, and since for octa- 
hedral  sites h is odd, the parit ies of v and w are 
opposite to those of y and z, respectively. The result  
is shown as Table 8; the  use of this table  will be 
extended to subdivide the anions and the te t rahedra l  
sites as well. 

Table 8. Subdivision of sites according to their 
v- and w-parity 

Vmod 2, Wmod 2 ---~ 

11 10 0 0  01 

a b c d 

In  the  cubic rocksalt-like ant i ferromagnets ,  ex- 

change c0~p~n~ occ~ed 0~y between dipo\e~ hu~in~ 
the same set of v- and w-parities, with all dipoles a t  
sites with even K antiparallel  to those a t  sites with 
odd K. As an example of the application of the  
algori thms presented in this paper,  we shall compute 
the exchange angle for the hexagonal  nickel arsenide 
structure.  Exchange  coupling between dipoles on 
cations occurs through an anion, and is strongest when 
the ca t ion-anion-ca t ion  angle is closest to 180 ° . The 
coupling strength not only decreases with decreasing 
angle, but  also with increasing cat ion-anion distances. 
Let  us consider exchange coupling through the anion 
a t  the origin ; coupling through any  other anion follows 
the same pat tern .  At  the origin h=O, v = 0 ,  w=O; 
from Table 8 it follows that the anion at the origin 
belongs to the 'c' subarray.  For  hexagonal  s t ructures  
the octahedral  sites all occupy F-a r rays ,  so t ha t  they  
have v = 3 L - l ,  w = 3 M - 1 .  The cations nearest  the  
origin lie in the planes h = 1 and h = - 1 ; their  v and w 
coordinates are therefore combinations of 2 and --1.  
The six cations nearest  the origin are listed in Table 9; 
i t . i s  seen t ha t  the cations of the  'c' a r ray  are not  
represented among the nearest  six. I t  is generally t rue  
t ha t  anion-cat ion distances are smaller when the two 
ions have different sets of v and w parities, t han  when 
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both  v and w parit ies are the same. The u, x, y and z 
coordinates listed in Table  9 are found from h, v and w 
with  the aid of equations (1)-(5). 

Table 9.* Coordinates of cations nearest origin 
for NiAs structure 

Cation h v w u x y z 
a / [ --1 --1 2 1 0 0 
b / 1 / --1 2 --1 0 0 1 

0 1 0 d 2 --1 --1 

a" / [ - I  1 2 ~ - §  - ~  
b" / --1 i 1 2 1 - ~  - §  t 
d' 2 1 1 --§ ~ --] 

t~ • - 1  2 2 - 4  - 3  + 

If we call the vectors from the origin to the nearest  
a a ,  tha t  to the nearest  b b ,  etc., we can f ind the 
cosine of the  angle subtended by  any  pair  of cations 
at the origin by  taking the seal~r product  of the 
vectors going to each of the cations" 

a . a  ( ½ ) + 0 + 0  
cos  ( a ,  a ' )  - 

[a[ [a'[ 1 . [ ( ½ ) 2 + (  ---8)2 2 + ( _ ~ )  ] 2  2 ½--~ ~" 

Similar ly  it is shown tha t  cos (b, b ' ) = c o s  (d, d ' )=½.  

cos (a, b ')  = --~ = cos (a, d')  -- cos (b, d') . 

c o s ( a , b )  = 0 = c o s ( a ' , b ' )  = c o s ( a , d ) .  

The largest angles are the  ones whose cosines are -~-, 
t ha t  is, angles of 131 ° 46' ;  exchange coupling therefore 
is not as strong in the NiAs structure as it is in the 
rocksalt structure,  where the angle is 180 ° . The angle 
131 ° 46' occurs in nickel arsenide whenever the two 
cations and the anion involved in the coupling each 
have  a different set of v- and w-parities. Each cation 
has six nearest  anions belonging to subarrays different  
from its own; each of these anions has two nearest  
cations belonging to subarrays  different  from both the 
anion and the first  cation. Therefore each cation is 
coupled through an angle of 131 ° 46' to twelve other 
cations tha t  all have sets of v- and w-parities different 
from its own. This contrasts wi th  the coupling in 
rocksalt, in which each cation is coupled through an 
angle of 180 ° to six other cations with the same set of 
v- and w-parities. 

7. S p i n e l  

In  par t  I it  was shown that ,  in spinel, one half  of all  
octahedral  and one eighth of all te t rahedra l  inter- 
stices between cubical ly closely packed anions are 
occupied. The results of par t  I are expressed in the 
dis t r ibut ion pa t te rn  of Table 10, where the dis t r ibut ion 
of ions within the various h-planes is expressed as a 
funct ion of v and w. I t  was s tated in par t  I tha t  there 
are m a n y  equivalent  dis tr ibut ions of ions, differing 
from each other only in rotation. This equivalence is 

* Pr imes  indicate  odd values of K,'as defined in pa r t  I. 

a funct ion of the s y m m e t r y  properties of the cubic 
system. The dis t r ibut ion pat tern  should be sufficiently 
general to include all equivalent  dis t r ibut ions;  for this 
reason, the rows in Table 10 are labeled in terms of 
the value of (h -2K0) ,  where K0 is an integer. If  K0 
is even, then  the rows h - 2 K o =  1, 5, 9, etc. correspond 
to the planes containing the sites tha t  were unpr imed  
in par t  I, while those having h-2Ko=3 ,  7, 11, etc. 
correspond to those sites tha t  were pr imed in par t  I. 
If  K0 is chosen odd, then  the pr imed and unpr imed  
sites are interchanged.  The columns in Table 10 are 
not  separately labelled, for any  ass ignment  of the 
b inary  numbers  zero through three will do. If, for in- 
stance, the four columns are labeled successively 11, 
10, 00, 01, then  they  represent respectively a, b, c, and 
d sites (see Table  10). O n  the  other hand  the  assign- 
ment  (00, 11, 10, 01) would correspond to the sequence 
c, a, b, d. S ince  there are twenty-four  ways of labeling 
the column headings, and K0 m a y  be chosen either 
even or odd, there would be altogether forty-eight  
different bu t  equivalent  ways of label ing the entries 
in Table 10. 

Table 10. Distribution pattern in spinel 

(Vmod 2, Wmod ~) --> 

+ o o o 1 v 
3 0 0 0 1 
+ o o o 1 A 
~ o o o o V 
1 1 1 1 0 

½ o o o o A 

I t  is of interest  to apply  to Table  10 the observa- 
tions, made  in section 6, tha t  ions and sites having 
the same set o f  v- and w-parities are never  nearest  
neighbors. We conclude from the dis t r ibut ion pa t te rn  
of Table 10 tha t :  

(a) The h-planes containing octahedral  sites are 
a l te rna te ly  more and less densely populated.  

(b) Only h-planes adjoining the less densely popu- 
lated octahedral-site planes are occupied by  tetrahe-  
dra l ly  coordinated cations. 

(c) The te t rahedra l  sites are occupied such tha t  the 
average separat ion of ions is a max imum,  hence the 
electrostatic repulsion a min imum.  

In  Table 10 the tr iangles in the tetrahedral-s i te  
planes indicate  whether  the  te t rahedra l  sites have 
their  apex point ing in the positive (A) or negat ive 
(v)h 'direct ion.  

8. Ol iv ine  

In  olivine, as in spinel, one half  of all octahedral  and 
one.. eighth of all  te t rahedral  sites a r e  occupied. 
Olivine differs from spinel in two respects, however. 
I n  the first place, the anions are more near ly  hex- 
agonal ly  than  cubical ly closely packed, and in the 
second place, the dis t r ibut ion pa t te rn  is different. In  
olivine the cations are more uni formly dis t r ibuted 

30* 
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along the H-axis  t h a n  in spinel, with each octahedral-  
site plane half-occupied, and  each te t rahedral-s i te  
plane one-eighth occupied. This means  t h a t  the  four 
a r rays  in each h-plane must  each be divided into two 
halves, wi th  a result ing loss of symmet ry .  In  making 
the  fur ther  subdivision, one of the three axes perpen- 
dicular  to the  H-axis  is singled out in preference to 
the  other  two, and  as a result  the cation dis tr ibut ion 
in olivine has or thorhombie symmet ry .  Although the 
anion s t ruc ture  has hexagonal  symmet ry ,  the  sym- 
me t ry  of olivine is orthorhombic.  

I n  drawing a dis tr ibut ion pa t t e rn  for olivine we 
find that ,  as a result  of the lower symmet ry ,  the  four 
subarrays  a, b, c, and d are no longer equivalent  to 
each other. Suppose t ha t  the three axes of the ortho- 
rhombic s t ructure  are oriented in such a way tha t  two 
axes coincide with the H- and W-axes, respectively, 
of our coordinate system, with the thi rd  axis normal  
to both of these, lying in an h-plane a t  angles of 30 ° 
and 150 ° with respect to the V- and U-axes. Then the 
W-axis is singled out as unique, and the four sub- 
a r rays  are fur ther  subdivided into halves according 
to their  w-coordinate. In  each h-plane the ion sites 
are separa ted from each other  by integer multiples of 
three units of w. In  D-planes the b- and c-arrays have 
sites located a t  w = 6N, where N is an integer, because 
for these ar rays ,  w is even (see Table 8). Similarly, 
the  a- and d-arrays  have sites located a t  w = 6 N + 3  
in D-planes, since they  mus t  have  odd values of w 
(see Table 8). Similarly, in E-planes the  b and c 
a r rays  have sites with w =  6 N + 4 ,  and a and d sites 
with w = 6N + 1, while for F-a r rays ,  the b and e ar rays  
occupy the lines w = 6 N + 2 ,  and the a and d a r rays  
the lines w = 6N + 5. Thus the periodicity of the sites 
in any  given h-plane is six units  of w. In  olivine the  
dis tr ibut ion of ions over these sites is such t h a t  the 
s t ructure  has a periodicity in any  h-plane of twelve 
units  in w. This means tha t ,  for instance, in a D-plane 
the  line w = 0 has a different distr ibution of ions over 
its b- and c-sites t han  does the line w = 6, but  the same 
distr ibution as the line w = 1 2 ,  or, indeed, any  line 
w =  12N. Thus we assign subscripts '1' and '2' accord- 
ing to the  following definitions: 

In  D-planes the  sites of a r rays  al and dl have  
w = 1 2 N + 3 .  

In  D-planes the sites of a r rays  a2 and d2 have 

w =  12N Jr 9. 
In  D-planes the  sites of a r rays  b~ and cl have  

w = 1 2 N + 6 .  
In  D-planes the  sites of a r rays  b~. and c2 have  

w =  1 2 N +  12. 

In  E-planes the sites of a r rays  al and dl have 
w =  1 2 N +  1. 

In  E-planes the  sites of a r rays  a~. and d2 have  
w = 12N + 7. 

I n  E-planes the  sites of a r rays  bl and c~ have 
w = 1 2 N + 4 .  

In  E-planes the sites of a r rays  be and  c.~ have  
w = 1 2 N + 1 0 .  

In  F-planes  the sites of a r rays  al and dl have  
w = 1 2 N + 5 .  

In  F-planes  the sites of a r rays  a~ and d2 have  
w = 1 2 N +  11. 

In  F-planes  the sites of a r rays  b~ and c~ have  
w =  1 2 N +  2. 

In  F-planes  the  sites of a r rays  b2 and c2 have  
w =  1 2 N +  8. 

In  the  s u m m a r y  given in Table 11, it  is observed 
t h a t  the subscript  ' l '  is a t t ached  to all sites having 
12N < w _< 1 2 N +  6, the subscript  '2' to all sites having 
12N + 6 < w _< 12N + 12. The distr ibution pa t t e rn  over 
these eight a r rays  is shown in Table 12; just  as in 
spinel, the coordinate along the h-axis is expressed as 
( h - 2 K 0 ) .  The column headings are no longer im- 
mater ia l  because the four a r rays  a, b, c and  d are no 
longer completely symmetr ica l  with respect to each 
other. They are therefore labeled so as to distinguish 
their  v- and w-parities;  the symbol '-~' indicates 

Table 11. Definition of subarrays of ionic and 
interstitial sites in olivine 

A r r a y s  
z .  

T y p e  of 
w E v e n  v O d d  v p l a n e  

1 2 N +  1 d 1 a 1 E 
1 2 N  + 2 c 1 b 1 -~ 
1 2 N  + 3 d 1 a 1 D 
1 2 N  + 4 c 1 b 1 E 
1 2 N  + 5 d I a I F 
1 2 N  + 6 c 1 b x D 
1 2 N  + 7 d~. a n E 
1 2 N  + 8 c a b 2 2' 
1 2 N  + 9 d 2 a n D 
1 2 N +  10 c 2 bo E 
1 2 N  + 11 d 2 a~. 2' 
1 2 N +  12 c 2 b 2 D 

Table 12. Distribution pattern for olivine 

3 

I 1 
v ½ 

v 

1 / ~ 2  1 / ~ 2  1 / ~ 2  1 / ~ 2  
, * ,  , , -  

0 0 0 0 0 0 0 1 

0 0 1 0 1 0 1 1 

0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 

1 1 0 1 0 1 0 0 

1 0 0 0 0 0 0 0 

binary  complementat ion,  so t h a t  if v equals zero, 
equals uni ty,  and if w equals unity,  ~ equals zero. 

I f  we choose, for instance, v= 1 and w=O, then  the  
columns in Table 12 represent  the a r rays  bl, b2, al,  a2, 
dl, d2, cl, c2. I t  is interesting to note t h a t  the  point  
marked  * in Table 12 is a point  of inversion in the  
distr ibution pa t t e rn  for olivine. 
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Table 12 can be stated in words by passing along the tion is suitable for computation because it has physical 
H-axis starting at  the origin: significance, while the literal one is not. 

(h - 2K0)mod 4 = 0 : 
Completely filled anion plane. 

( h -  2K0)mod4= ½: 
One subarray occupied. 

( h -  2Ko)mod 4 = 1 : 
Four subarrays occupied, two having the same 
v- and w-parities as the one at  (h-2K0)mod4= ½, 
while the other two both have opposite w-parities 
and opposite subscripts from the one having 
(h-- 2Ko)mod 4 : ½. 

( h -  2K0)mod 4 = t : 

The same subarray occupied, as at  
(h - 2K0)mod 4 = ½. 

(h-2Ko)mod4=2 : 
Completely filled anion plane. 

( h -  2Ko)mod 4 = 5. 
One subarray occupied, having the same w-parity 
but  opposite v-parity and subscript as the one at  
(h -- 2Ko)mod 4 = ½. 

(h-- 2K0)mod 4 = 3 : 
Those four subarrays tha t  were unoccupied at  
( h -  2Ko)mod 4 = 1, occupied. 

(h - 2Ko)mod 4 =/2 : 
One subarray occupied, having the same w-parity, 
but  opposite v-parity and subscript, as the one 
occupied in the plane (h-2Ko)mod4=½. 

9. S u m m a r y  a n d  c o n c l u d i n g  r e m a r k s  

A mathematical  method has been devised for describ- 
ing the location of all ions in crystal structures having 
either hexagonally or cubically closely packed anions. 
This method is quite suitable in the development of 
a vocabulary of crystal structures for digital com- 
puters. I t  is interesting to compare the number of 
binary digits necessary for storing the spatial concepts 
with the number of digits necessary for storing the 
name of the crystal. The number of digits necessary 
for storing a letter in a computer memory can be 
taken as log2 26, which is approximately 4.7. Thus the 
word 'spinel,' which contains six letters, requires 
approximately twenty-eight binary digits, while the 
word 'olivine' requires thir ty- three binary digits. 
From Tables 10 and 12 it follows tha t  the concepts 
'spinel' and 'olivine' require twenty-five and forty-nine 
binary digits, respectively, tha t  is, one more than  the 
number of digits shown in those tables in order to tel l  
the  computer whether the structures are hexagonal or 
cubic. For simpler structures, such as rocksalt and 
sphalerite, the conceptual description requires far less 
memory space than does the literal one. More impor- 
tant ,  of course, is the fact tha t  the conceptual descrip- 

I// .:~ \:! 
_: 

Fig. 3. Modules for interstitial models. 

The analysis has led, furthermore, to the invention 
of interstitial crystal models. Of the four modules 
shown in Fig. 3, the seven structures discussed in this 
paper have been constructed with the aid of the 
distribution patterns. Each of the modules shown 
represents an interstice between closely packed anions; 
the anions are not shown explicitly, but  are at  the 
corners of the polyhedra. Occupied cation sites are 
shown by a sphere at  the center of the polyhedron, 
empty  sites by an empty  polyhedron. Close-packing is 
easily demonstrated by showing tha t  the tetrahedra 
and octahedra together can occupy all of space; the 
difference between cubic and hexagonal close-packing 

• . . . .  

Fig. 4. Interstitial model of rocksalt. 
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is demonstrated by placing.tetrahedra on top of octa- 
hedra and octahedra on  top  of te t rahedra in the cubic 
case, and octahedra on top of octahedra, and tetra- 
hedra on top of tetrahedra in the hexagonal case, with 
adjacent modules sharing a tr iangular face. Pauling's 
rules are thus easily demonstrated. 

Fig. 4 demonstrates the rocksalt structure, with a 
111-axis vertical. All octahedra are filled, all tetrahedra 
empty. Fig. 5 shows nickel arsenide, which differs 
from rocksalt by the rotation described in section 2. 

Figs. 6 and 7, similarly, show sphalerite and wurt- 
zite, with only half of the tetrahedral  sites occupied; 
in this case, all those that  have their apices pointing 
upward. 

Fig. 8 shows the antifluorite structure, with all 
tetrahedral sites occupied. [The authors are indebted 
to Prof. David P. Shoemaker for the observation that  
rotation into the hexagonal analogue would flagrantly 
violate Pauling's rules.] 

Fig. 9 shows a portion of the spinel structure; ac- 
cording to Table 10 the lower layer of modules contains 

Fig. 5. Interstitial model of nickel arsenide. 

three times as many  filled as empty octahedra, while 
the upper layer contains three times as many empty as 
filled octahedra. Table 10 indicates also that  in the 

- e, ' "" i • ,i<:f~: 
• :. ::! q 

/ i :-? ' , ,-t  
/ C  i '~,7 , , '  

i , /  : :  : '"d 

- I-X,X / ~ "~, :/ 

/ . ;w ., / , w  k ,  . . / . ' " 

Fig. 7. Interstitial model of wurtzite. 
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Fig. 8. Interstitial model of antifluorite. 

"-, // >U ? u,,~ /.I ; V 

Fig. 6. Interstitial model of sphalerite. 
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Fig. 9. Interstitial model of spinel. 
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portion shown filled tetrahedra sit on empty octahedra, 
and empty tetrahedra sit on filled octahedra, as can 
be confirmed by comparing the occupation of the 
tetrahedral site plane ( h -  2K0)mod 4 = 5/2 with that  
of the octahedral site plane (h-2Ko)mod4=l .  

The olivine structure, which is similarly constructed, 
is shown in Fig. 10. 

Fig. 10. Interstitial model of olivine. 

In these models the tetrahedrally surrounded ions 
are represented by red, the octahedrally surrounded 
ions by blue spheres. 

The intersti t ial  models have the advantage of 
flexibility, since they are self-supporting and do not 
need interlocking mechanisms. The rods supporting 
the spheres actually represent the anion-cation bonds, 
the corners at which all edges converge, the anions, 
so that  the structures owe their support to physically 
meaningful elements. Therefore these models can be 
used to show many  crystal structures and, especially, 
the relationships between these structures. They are 
invaluable for deriving and checking the distribution 
patterns. 

The authors are indebted to Mr Ralph Casale for 
his assistance and guidance in constructing the four 
types of modules, and to Mr Stuart Bemis for making 
the photographs shown in Figs. 3 through 10. 
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Single crystals of KReO4 have been examined by means of X-ray diffraction in order to determine 
the location of oxygen atoms in the unit cell. The unit-cell dimensions have been redetermined and 
found to be: 

a = 5.680 _+ 0.002, c = 12.703 _+ 0-006 A .  

The space group is I41/a with 4 K and 4 Re in special positions and 16 O in general positions cor- 
responding to x = 0" 131, y = 0-041, z -- 0"210. Oxygen atoms form nearly regular tetrahedra around Re. 
The Re-O separation suggests considerable double bond character for this bond. 

Introduction 

Shortly after the isolation of rhenium, Broch (1929) 
examined KRe04 powder with Cu Kc~ radiation and 
proposed that  the salt is isomorphous with scheelite, 
CaWOa. The present work was begun to determine the 
locations of the oxygen atoms in KRe04, for which 
purpose diffraction by single crystals is required. 

Experimental  procedure 

Pure KRe04, obtained from the Department  of Chem- 
istry of the University of Tennessee, was used to 
prepare a water solution from which tetragonal octa- 

hedra were deposited on slow evaporation of the solvent. 
The specimen used for b-axis rotation had a length of 
115.5 microns; its max imum cross-section was a 
square with side 63.0 microns. For c-axis rotation the 
crystal selected had corresponding dimensions of 76-1 
microns and 34.4 microns. For both crystals, diffrac- 
tion of Zr-filtered Mo K s  radiation was recorded by 
the Weissenberg and precession methods. 

Kodak No-screen and Blue Brand film, six sheets 
in depth, were employed for the recording of equatorial 
Weissenberg photographs. Intensities were estimated 
visually by comparison with t imed exposure scales 
produced by the diffracting crystal. ~ince the small 
Bragg angle of (101) prevented its being recorded by 


